Roll No.

72601

M.Sc. Physics 1st Sem. Examination-December, 2014

Mathematical Physics

Paper : I

Time: 3 hours

Max. Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard will be entertained after the examination.

Note: Attempt five questions in all, selecting one question from each Unit.

UNIT - I

 (i) Prove that eigen value of a skew Hermitian matrix is either zero or purely imaginary.

4

(ii) Derive Rodrigue's relation for Legendre polynomials.

72601-1300-(P-7)(Q-9)(14)

(1) [Turn Over

- (iii) Explain convergence property for solutions of Legendre equation. 4
- (iv) Using Fourier Series, show that: 4

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin nx}{n} = \frac{x}{2}$$

II - TINU

Marks 180

2. (i) Explain eigen values and eigen vectors of a matrix. Find the eigen values and a set of mutually orthogonal eigen vectors of

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

- (ii) Prove that the eigen vectors
 corresponding to distinct eigen values
 are linearly independent.

 4
- 3. (i) Prove that any two eigen vectors corresponding to two distinct eigen values of a Hermitian matrix are orthogonal. 4

(ii) For the vector space R^4 of elements $[x_1, x_2, x_3, x_4]$, show that the vectors which satisfy the relation

$$2x_1 - 3x_2 - x_3 + x_4 = 0$$
$$x_1 + x_2 + 2x_3 - x_4 = 0$$

from a subspace of R⁴. Find a basis for this subspace.

UNIT - III

4. While describing series solution around a point, obtain complete solution of:

$$x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + ay = 0; a = constant.$$

How classification of a point is made? Give one example of each type.

5. (i) Determine the nature of a point at infinity in respect of:

(a)
$$(1-x^2)\frac{d^2y}{dx^2} - \frac{xdy}{dx} + n^2y = 0$$
;
72601-1300-(P-7)(Q-9)(14) (3) [Turn Over

n = integer

(b)
$$x(x-1)\frac{d^2y}{dx^2} + [(1+a+b)x-C]$$

 $\frac{dy}{dx} + aby = 0$

(ii) Prove that Bessel Equation can be derived from Legendre equation.

UNIT - IV

6. (i) Show that :

4

$$H_n(x + y) = 2^{-n/2} \sum_{p=0}^{n} \frac{n!}{p!(n-p)!} H_{n-p}(x\sqrt{2}) H_p(y\sqrt{2})$$

(ii) If
$$y = \exp(-x^2/2)H_n(x)$$
 and
$$I_{m,n} = \int_{-\infty}^{\infty} y_m(x) y_n(x) dx$$

then prove that $I_{n, n} = 2nI_{n-1, n-1}$; H_n is Hermete polynomial.

(iii) Explain integral representation of Bessel functions. Deduce value of 8

$$J_{\pm 1/2}(x) \Delta J_{\pm 5/2}(x)$$

7. (i) Derive the relation:

$$J_n(\mathbf{x}) = (-2)^n \mathbf{x}^n \left\{ \frac{d^n}{d(\mathbf{x}^2)^n} \right\} J_o(\mathbf{x})$$

(ii) Prove that:

 $\int_{0}^{\pi/2} J_1(x \cos \theta) d\theta = \frac{1 - \cos x}{x}$

(iii) Derive the Rodrigue's relation for Laguerre polynomials and verify the orthogonality of Leguerre functions.

UNIT - V

8. (i) Laplace transform of the displacement function y(t) for a forced, frictionless, spring-mass is found to be

$$y(s) = {w F_o/M \over (s^2 + w_o^2) (s^2 + w^2)}$$

for a particular set of initial conditions. Find y(t).

4

(ii) If S_n and C_n denote finite Fourier sine and cosine transforms in the interval $0 \le x \le \pi$, prove that

(a)
$$S_n\left\{\frac{x}{n}\right\} = \frac{1}{n}\sqrt{\frac{\pi}{2}} (-1)^{n+1}$$
 n is an integer

(b)
$$C_n(e^{an}) = -\sqrt{\frac{2}{\pi}} \frac{a}{n^2 + a^2} \left[1 + (-1)^{n+1} e^{a\pi}\right]$$

9. (i) Show that Fourier transform of a Hermite-Gauss function

$$U_n(x) = H_n(x) e^{-x^2/2}, x = 0, 1, 2, 3 \dots$$

is a Hermite Gauss function within a constant.

(ii) Show that Laplace transform of Laguerre polynomial

L_n(at) is given by

$$L[L_n(at)] = \frac{(s-a)^n}{s^{n+1}}; s>0$$